Funciones Polinómicas

Sitio: Educación a Distancia - UNaM
Curse: Matemática
Libro: Funciones Polinómicas
Impreso por: Cuenta visitante
Fecha: martes, 10 de diciembre de 2024, 16:28

Descripción

Ves 2022

LAS FUNCIONES

  • Qué es una función

La noción actual de función comienza a gestarse en el siglo XIV por la preocupación de medir y representar gráficamente las variaciones de ciertas magnitudes como la velocidad de un cuerpo en movimiento o la diferencia de temperatura en los distintos puntos de un objeto metálico. Podríamos decir entonces que la función se originó por el interés en el cambio. De esta manera, la función es un instrumento para el estudio del cambio.

Las funciones se utilizan para describir, analizar e interpretar situaciones provenientes de la Matemática y otras ciencias, dando cuenta así de su alto nivel de aplicación. Por este motivo vale la pena aprender en matemática qué son las funciones. En este video encontrarán una respuesta. 

.

Video tutorial: ¿Qué son las funciones?

Proponemos que realicen esta actividad de reconocimiento de funciones a partir de gráficas y notación simbólica.  De esta manera también valoran sus conocimientos previos en relación al tema.

.

.

CLICK AQUÍ PARA RESPONDER EL CUESTIONARIO DE RECONOCIMIENTO DE FUNCIONES

Si les queda alguna duda o se les presentan dificultades en la comprensión del tema vuelvan a mirar el video tutorial. Nunca se desanimen, lo importante es avanzar.

.

La próxima vez que alguien se queje de que ha cometido un error, díganle que puede ser algo bueno. Porque sin imperfección, ni tú ni yo existiríamos (Stephen Hawking)

.

 

El video tutorial titulado ¿Qué son las funciones ? finaliza con esta reflexión formulada como pregunta:

Les proponemos que investiguen las opiniones de diferentes matemáticos y filósofos en relación a esta pregunta. 

 ¿Qué opiniones tienen más sentido para Uds ? ,¿por qué?

Tengan en cuenta que les preparamos un Breve Glosario Matemático como un material más de apoyo al estudio en esta experiencia matemática.

.

.

LA FUNCIÓN POLINÓMICA DE PRIMER GRADO O FUNCIÓN LINEAL

La función lineal es una función polinómica porque su fórmula está asociada a un polinomio de primer grado. Se puede expresar de esta forma:  bold italic f negrita paréntesis izquierdo bold italic x negrita paréntesis derecho negrita igual bold italic a bold italic x negrita más bold italic b , donde bold italic a y bold italic b son números reales. Su dominio son los números reales (R) porque es el conjunto más amplio para el cual la fórmula tiene sentido.

Las funciones polinómicas constituyen una herramienta útil para construir modelos de situaciones. Por sus propiedades y por la simplicidad de los cálculos que involucran (las cuatro operaciones elementales) son utilizadas para "ajustar" datos experimentales como para aproximar funciones.  Veamos un situación concreta en la que se ajustan razonablemente los datos de manera tal que podríamos utilizar una función lineal como modelo matemático.

Para poder hacer la modelización matemática con una función lineal de situaciones reales,  como la de los grillos, es necesario conocer las características de estas funciones y de sus distintas representaciones: fórmulas, tablas de valores, gráficos, etc. Con este propósito les proponemos una serie de actividades.

çEn esta actividad de función lineal con el Geogebra pondrán en juego los conocimientos que ya tienen, conocidos como conocimientos previos, y, acaso, también, sus estrategias de ingenio que también tienen. Cuando estudien función cuadrática también propondremos actividades que tienen esta intención.

https://www.geogebra.org/m/ur7ghpq5

.

.CLICK AQUÍ PARA CONTESTAR EL CUESTIONARIO DE FUNCIÓN LINEAL

 

¿Qué diferencias encuentran cuando aprenden  Matemática utilizando el GeoGebra? ¿Se animan a escribir una idea sobre cuándo creen que aprenden mejor Matemática?.   

Para resolver cualquiera de las  actividades que proponemos no deben recurrir primero a la Guía de Estudio. Precisamente lo que pretendemos es que revisen y valoren los conocimientos que tienen del tema. Luego, les invitamos a que interactúen con la Guía de Estudio para aclarar dificultades o afianzar conocimientos del tema.

.

.

  • Pendiente de la recta y ordenada al origen

En la función lineal  , f(x) =ax + b, los parámetros a y b llamados pendiente de la recta y ordenada al origen respectivamente,  tienen un significado en la representación gráfica. Este video tutorial da una buena explicación en ese sentido.

.

Video tutorial: La Función Lineal- Episodio 1

Supongamos que  P(x1,y1) y Q (x2,y2) son dos puntos diferentes de la recta correspondiente al gráfico de una función lineal; entonces, podemos calcular la pendiente como:

.

.

Escriban un argumento claro y con justificativos matemáticos explicando por qué se cumplen estas dos condiciones:

  1. la ecuación y = 0 tiene como gráfica al eje x.
  2. el gráfico de una función lineal es una recta no vertical
  • Relaciones entre la fórmula , la gráfica y la ecuación lineal

En este video - Episodio 2 -  podrán ver cómo  un cambio en las condiciones iniciales del mismo problema del Episodio 1 modifica la fórmula y la gráfica de la función.  Se destacan nuevamente los elementos distinguidos de una función polinómica: pendiente de la recta, ordenada al origen y raíz.  También se presenta la conexión entre función lineal y ecuación lineal. 

.

Video tutorial: La Función Lineal- Episodio 2

Supongan que tienen como datos las coordenadas de dos puntos de una recta que es la gráfica de una función lineal. Es posible hallar la ecuación de esa recta utilizando la siguiente fórmula:

 

→Para tener en cuenta

Para describir, analizar e interpretar de manera más completa las situaciones provenientes de la Matemática o de otras ciencias, es importante trabajar estableciendo relaciones entre conceptos de distintas ramas de la Matemática (Aritmética, Geometría, Álgebra, entre otras). Esta actividad con el Geo es una muestra de ello. ¡Experimenten!

https://www.geogebra.org/m/zg3egpd2

.

.

Y ahora ha llegado el momento de "hacer matemática" con la Guía de actividades de función lineal. En esta Guía encontrarán situaciones de distinto tipo en las que utilizaran las características y distintas formas de representación de la función lineal.

.

 

CLICK AQUÍ PARA RESOLVER LA GUÍA DE ACTIVIDADES DE FUNCIÓN LINEAL

LA FUNCIÓN POLINÓMICA DE SEGUNDO GRADO O FUNCIÓN CUADRÁTICA

La función cuadrática es una función polinómica porque esta asociada a un polinomio de segundo grado. Tiene la forma bold italic f negrita paréntesis izquierdo bold italic x negrita paréntesis derecho negrita igual bold italic a bold italic x elevado a negrita 2 negrita más bold italic b bold italic x negrita más bold italic c, donde los coeficientes bold italic a , bold italic b y bold italic c son números reales, siendo bold italic a negrita no igual negrita 0. Consideraremos que su dominio es el conjunto de los números reales (R).

Las funciones cuadráticas también permiten construir modelos de problemas cotidianos o referidos a distintas ciencias.  A menudo, estos  problemas generan como datos puntos no alineados que se pueden ajustar por medio de una función cuadrática.  Veamos un ejemplo.

 

Para ajustar la función cuadrática a los datos del problema se necesita tener conocimientos de funciones cuadráticas. Por ello, a continuación nos ocupamos de las funciones cuadráticas en distintas actividades.

Siempre debemos recuperar los conocimientos que tenemos de un tema - conocimientos previos -para poder vincularlos con los nuevos conocimientos. En este caso, revisar los conocimientos que tienen de funciones cuadráticas les va a permitir valorar lo que aprendieron con sentido, por eso recuerdan, o lo que indudablemente no lograron aprender con sentido, por eso no lo recuerdan. Esta  actividad de función cuadrática con el GeoGebra les permitirá hacer esa valoración.

https://www.geogebra.org/m/msrn9qs5

 CLICK AQUÍ PARA CONTESTAR EL CUESTIONARIO DE FUNCIÓN CUADRÁTICA

¿Pudieron resolver toda la actividad? Piensen en cuáles fueron las dificultades que tuvieron y anoten en un cuaderno para tenerlas presentes durante el desarrollo del tema.   

Funciones cuadráticas de fórmula 

La fórmula de la función cuadrática que permitió construir un modelo en la situación de la venta de las pizzas tiene la forma f(x) = ax2+bx+c. En este caso particular a=0,0025; b=0,125 y c=2,5

Si damos distintos valores a los coeficientes a,b y c obtenemos distintas fórmulas y gráficas que se comportan de distintas maneras. Por ello, es importante estudiar la gráfica de una función cuadrática y  su comportamiento según los valores de los coeficientes. Este video tutorial desarrolla este tema.

Video tutorial: La función cuadrática

  • A modo de síntesis respecto a la construcción del gráfico de 

Tomamos las ideas desarrolladas en el video tutorial y elaboramos un cuadro que sintetiza el procedimiento para construir la gráfica de una función cuadrática.

La función cuadrática tiene por fórmula un polinomio de segundo grado. Entonces, para hallar las raíces de la función cuadrática debemos resolver una ecuación cuadrática. Por eso se puede utilizar la fórmula resolvente para determinar las raíces de la función cuadrática. De esta manera estamos estableciendo la conexión entre función cuadrática y ecuación cuadrática. El video tutorial que presentamos a continuación aporta a la comprensión de esta conexión.

Video tutorial: La función cuadrática y su relación con la ecuación cuadrática

La siguiente FICHA DE ESTUDIO es un recurso más para ayudarles  recordar los conceptos trabajados hasta aquí. Léanla detenidamente. 

Experimenten la actividad planteada en el GeoGebra:

Gráficos de una función cuadrática expresada en forma canónica f(x) = a(x-h)2+k 

                                 https://www.geogebra.org/m/a5dszp7n

Analicen el comportamiento de las gráficas a partir de mover los deslizadores y establezcan relaciones entre las distintas fórmulas y las gráficas. Respondan:

  • ¿Cuáles son las coordenadas del vértice de cada gráfica? Predigan las coordenadas del vértice de la función f(x) = (x-20)2+40
  • En las gráficas de las funciones f(x) = (x-h)2+k , ¿qué efectos tiene k en la gráfica?

En esta Guía de Actividades de Función Cuadrática encontrarán las distintas actividades que proponemos para que utilicen los conceptos que se pusieron en juego en las actividades de este tema. Es decir, ha llegado el momento de practicar para aprender. 

CLICK AQUÍ PARA RESOLVER LA GUÍA DE ACTIVIDADES DE FUNCIÓN CUADRÁTICA

En las Matemáticas es donde el espíritu encuentra los elementos que más ansía: la continuidad y la perseverancia (Anatole France)

 

CUESTIONARIO DE EVALUACIÓN FINAL DEL BLOQUE 3

Como lo hicieron en los bloques anteriores, deben realizar una actividad de autoevaluación final del Bloque III. Tengan en cuenta que es una instancia más de este proceso de aprendizaje matemático que están transitando.

CLICK AQUÍ PARA CONTESTAR EL CUESTIONARIO FINAL

En relación a la autoevaluación final del bloque 3: ¿Han podido resolver todas las actividades de función lineal y función cuadrática?¿Qué actividades no resolvieron?   ¿ Qué actividades resolvieron de manera mecánica, sin saber por qué  utilizaron determinado procedimiento?¿Qué aspectos de estas funciones deberían volver a revisar para aprenderlas con sentido?